Hall Tick	et No:						Course Code: 18ME	3AP114							
	MADANAPALLE INSTITUTE OF TECHNOLOGY & SCIENCE, MADANAPALLE (UGC-AUTONOMOUS) MBA II Year I Semester (R18) Supplementary End Semester Examinations— FEB 2022														
OPERATION RESEARCH Time: 3Hrs Max Marks: 60															
							be answered in one place only. hich is a case study is compulsor								
Q.1(A)	What is Opera Decision Makir		Expla	iin fea	atures	and	role of Operation Research in	10 M							
Q.1(B)	OR Solve the L.P.P. by Simplex method: $Max.Z = 5x_1 + 3x_2$ Subject to $x_1 + x_2 \le 2$, $5x_1 + 2x_2 \le 10$, $3x_1 + 8x_2 \le 12$, $x_1, x_2 \ge 0$														
Q.2(A)	Determine the problem:	optimum tra	nspor D1 1	D2	D3	for D4	the following Transportation Availability 30	10 M							
		P2 P3 Requirement	3 4 20	3 2 40	2 5 30	1 9 10	50 20								
		Requirement	20	OI		10									
Q.2(B)	Consider the problem of assignment five jobs to five persons. The assignment costs are given below. Determine the optimal assignment schedule: $1\ 2\ 3\ 4\ 5$														
		A B C	8 4 0 9 3 8		6 1 5 4 2 6										
		D E	4 3 9 5	1	0 3 9 5										
Q.3(A)	Solve the follow	A B C	ing do	mina	nce pr	opert	y:	10 M							

OR

Q.3(B) Explain:

10 M

i) Pure Strategies ii) Mixed Strategies

iii) Two Person, Zero Sum iv) Payoff

Matrix

Q.4(A) What is replacement problem? Describe some important replacement situations. 10 M What are the types of replacement decisions?

Q.4(B) A confectioner sells confectionery items. Past data of demand per week in '00 kgs with frequency are

 Demand
 0
 5
 10
 15
 20
 25

 Frequency
 2
 11
 8
 21
 5
 3

Generate the demand for next 15 weeks by using the following random numbers: 35, 52, 90, 13, 23, 73, 34, 57, 35, 83, 94, 56, 67, 66, 60. Also find out the average demand per week.

Q.5(A) ABC company has one hob regrinding machine. The hobs needing grinding are sent 10 M from company's tool crib to this machine which is operated one shift per day of 8 hours duration. It takes on the average half an hour to regrind a hob. The arrival of hobs is random with an average of 8 hobs per shift.

- 1. Calculate the present utilization of hob regrinding machine.
- 2. What is average time for the hob to be in the regrinding section?
- 3. The management is prepared to recruit another grinding operator when the utilization of the machine increases to 80%. What should the arrival rate of hobs then be?

OR

Q.5(B) Write short notes of the following
a) Critical Path Method and b) PERT

10 M

10 M

Q.6 CASE STUDY

The following table gives the activities of construction project and duration:

10 M

Activity	1-2	1-3	2-3	2-4	3-4	4-5
Duration	20	25	10	12	6	10
(days)						

Draw the network for the project. Find the

- a. Critical path and project duration.
- b. Total Float, Free float and independent float for each activity

END